Bioenergy villages – local core of energy

Not taking into account lignite and renewable energy sources, it can be argued, Germany depends on imports of energy resources. The import quota on coalnatural gas, and uranium ranges from 80 to 100%. Dependence on economically fragile regions is a risk for the local economy and for an internal relationship.


Nevertheless, we still need energy for normal functioning. What might be helpful is a smart approach called Distributed Generation. The background of this approach is an idea of powering both urban and rural areas locally by using own sources of energy. Particularly, we will talk about a specific manifestation of Distributed generation called Bioenergy Villages that ensures independence and self-sufficiency for territorial units. The concept of Distributed generation is based on using Distributed Energy Resources (DER). Possibility to adjust their sizelocation and productivity in order to meet specific needs of the population without over-expenditure make this concept a component part of sustainability from a financial and an ecological perspective. Which one could be called as a Distributed Energy Resource?

Bio-energy villages

For its part, the approach of Decentralized Distributed Generation for the rural area has manifested in the concept of Bioenergy villagesWhat/Who can be a target?


  • Households
  • Interested inhabitants
  • Agricultural cooperative
  • Commercial enterprises, local companies
  • The municipality administration

Technology Biomass is one of the most important fuels in the world. It is based on conversion organic material into energy sources. There are 3 types of biomass:

In the practice a wide variety of biomass conversion processes is presented:   A brief and simple explanation of the working principle of producing energy using the example of a residual type of biomass as a resource.


  1. The waste is burned to heat water.
  2. Boiled water creates steam.
  • The pressure and high temperature of the steam enters a turbine.
  1. The turbine powers a generator.
  2. The generator creates electricity.


The type of applied bioenergy technologies may vary considerably accordingly to the potential of a region itself:

  • Biofuels
  • CHP (combined heat and power)
  • Hydropower
  • Wood
  • Wind
  • Biogas


In order to meet village demand (heat, electricity and transport fuels) selected technologies were analyzed by Institute of Energy Economics and the Rational Use of Energy and German Academy of Science and Engineering. Results are presented in the table below.


Bio-energy Villages and Europe’s Role


A bio-energy village is a regionally oriented concept for the use of renewable energy sources in rural areas. Practical implementation Europe is a confluence of glaring examples of such enterprise. According to a list posted by Bioenergy Villages FNR (Fachagentur Nachwachsende Rohstoffe), currently there are 139 bioenergy villages in Germany and 48 units are on the way of implementation.



Within the land of Baden-Wurttemberg only there are 39 examples of this strategy. Furthermore, the project “Good Bioenergy Villages in Baden-Württemberg” was started aiming to the energy efficient practices.


By the year 2020, it is planned to increase the amount of heat supply and renewable energy used. The International Energy Agency (IEA) has its partners in 29 countries around the world. In 2005 the Federal Republic of Germany joined IEA, having signed an agreement with the organization. Within IEA Germany is currently engaged in 11 ongoing tasks regarding bioenergy and biomass, including inter-task and special projects. On a map below there are presented 14 the most successful practices of implementation of bioenergy strategies in Germany in accordance with a project “Bioenergy Villages (BioVill) – Increasing the Market Uptake of Sustainable Bioenergy” edited by Juan Manuel Ugalde, Dominik Rutz (WIP), Jens Adler (GIZ), Konstanze Stein (KEA), Martin Höher (AEA), Martina Krizmanić, Valerija Vrček, Velimir Šegon (REGEA).


Växjö, Sweden has presented a model of sustainability and aimed to make a city fossil-fuel-free by 2030. The process has started in the 90s. Decisions are making regarding following sectors:


  • biomass heat and power (a large wood-chip-fueled combined heat and power plant)
  • solar and wind power (using commercial-scale wind turbines as Sweden is not sunny enough)
  • Sewage treatment plant producing biogas (a big part of the plant was the large biogas digesters. Organic waste is collected from throughout the municipality and anaerobically decomposed in large reactor vessels to produce a methane-rich biogas. This biogas is used to fuel city buses and other municipal vehicles)
  • energy-efficient buildings (a single-family detached home and a multi-family apartment complexes built according to a German rating system with high requirements called Passivhaus standard)
  • transportation (ethanol-powered vehicles and electric vehicles)
  • local food (replacing local food production with organic agriculture)

As an illustration of Austria’s achievements such villages as Güssing, Bruck an der Leitha, Joglland, Kötschach-Mauthen, Mureck and Stetteldorf am Wagram may be cited. Apart from the representatives in Europe, the similar concept called “Smart Villages” was developed in India. Rural population in India is estimated on average at approximately 70%. Because of the poor road connectivity, there is sometimes no immediate connection with an urban area.


Moreover, energy demands may not always be met in a proper way. All these make health, educational and civil facilities suffer. It is easier to adjust a city to the innovations and implement new technologies there. However, there are fewer opportunities for it in villages. For advancing the first smart village in India – Harisal – government along with Microsoft have developed digital solutions for persistent rural problems.


The Green Building Advisor main goals were to improve medical service, education, increase residents’ income and develop an agricultural sector.


As a result, the positive development has taken place. Wi-Fi, decreasing number of school dropouts, better health-care system, eco-improvements and changes in other spheres were experienced by the villagers.



We can see undeniable advantages that affect many spheres and create a sustainable foundation for a living:


  • Environmentalprofit (decrease CO2 emission, resilience against natural disasters)
  • Self-efficacy(saving more energy because of the less distance between an energy transmitter and a target)
  • Economicbenefits for local communities (saving local budget, opening new economic relationships within one area, creating employment in rural area)
  • Decreasing dependenceon one exact source of energy
  • Reliability of using biomass since supplies of traditional sources of energy are being exhausted
  • Identificationof the inhabitants with the village (increase togetherness)
  • Strengthening social cohesiveness(encourage residents to organize, fund and implement smart strategy of using biomass )


Possible problems



  • Policymakers, administrations, and local governmentmay not always support an initiative
  • Long waiting for financial support and missing assurances from funding bodies

(Initial budget for implementation of the strategy varies from 500,000 to 5,000,000 Euro)

  • Concerning of local residentsabout costs, economic efficiency, security, technical problems such as smell and noise, risk of accidents
  • Demographic situationwithin the community (senior may be less motivated and more passive regarding the initiative)




Being dependent on unforeseen situations is a mismatch according to the fact people are living in the 21st century. Bioenergy is described as a renewable and sustainable source and, simultaneously, guarantees a certain level of freedom. Moreover, it strengthens both social interactions and business relationships, improves environmental situation allowing zero-waste villages and assists in saving local budget. According to forecasts, by 2040 the share of renewable energy will reach 47,7%, while the contribution of the biomass of 23.8%. Further development of the bioenergy sector is able to provide solutions for waste management, opportunities for social and economic advancement of rural areas, to increase energetic security and trade balance and to reduce greenhouse effect along with other environmental profits.

Leave a Comment